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In this study, the theory of micropolar fluids is employed to study the stability problem
of flow between two concentric rotating cylinders. The field equations subject to no-
slip conditions (non-zero velocity and microrotation velocity components) at the
wall surfaces are solved. The analytical solutions of the velocity and microrotation
velocity fields as well as the shear stress difference, couple stress and strain rate for
basic flow are obtained. The equations with respect to non-axisymmetric disturbances
are derived and solved by a direct numerical procedure. It is found that non-zero wall-
surface microrotation velocity makes the flow faster and more unstable. Moreover, it
tends to reduce the limits of critical non-axisymmetric disturbances. The effect on the
stability characteristics can be magnified by increasing the microstructure or couple-
stress parameter or the microinertia parameter for the cases of corotating cylinders
and a stationary outer cylinder or by decreasing the radius ratio or the microinertia
parameter for the case of counterrotating cylinders.

1. Introduction
The theory of microfluids proposed by Eringen (1964) deals with a class of non-

Newtonian fluids which exhibit certain microscopic effects arising from the presence
of microstructure. Eringen (1966) simplified it to obtain the model of micropolar fluids
by restricting the form of the gyration tensor, through which the theory of microfluids
allows a wide variety of microstructure. Due to the simplicity, this model has been
widely used in numerous applications of science and technology to describe the
rheological behaviour of certain real fluids, such as exotic lubricants (Allen & Kline
1971; Khonsari & Brewe 1989; Khonsari 1990), colloidal suspensions (Hadimoto &
Tokioka 1969; Rosenthal et al. 2004), liquid crystals (Eringen 1993), animal blood
(Popel, Regirer & Usick 1974; Kang & Eringen 1976), water (Papautsky et al. 1999),
etc. Excellent reviews of the literature on mathematical aspects and applications were
provided by Ariman, Turk & Sylvester (1973, 1974), Lukaszewicz (1999) and Eringen
(2001).

Stability problems of micropolar fluid flow are of great importance in research
activities due to industrial applications of fluids with additives. Liu (1970, 1971)
undertook the work and found that the presence of microstructure stabilizes plan flow.
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Kuemmerer (1978) conducted a more detailed analysis for the instability of plan
Poiseuille flow. Sastry & Das (1985) studied the stability of Couette flow and Dean
flow. Brutyan & Krapivsky (1992) studied the stability of Kolmogorov flow. Das,
Guha & Chattopadhyay (2005) implemented the stability analysis for hydrodynamic
journal bearings.

We concern ourselves with the problem of Couette flow, a viscous fluid flowing in
the annulus between two concentric rotating cylinders. In cylindrical polar coordinates
(r, θ, z), the appropriate velocity and microrotation velocity fields for fully developed
laminar flow are of the form

u = (ur, uθ , uz) = (0, u(r), 0), ω = (ωr, ωθ , ωz) = (0, 0, ω(r)). (1)

Let R1 and R2 be the radii of the inner and outer cylinders, and let Ω1 and Ω2 be
their angular velocities. Ariman, Cakmak & Hill (1967) have examined the flow of
micropolar fluids between a stationary inner cylinder and a concentric rotating outer
cylinder with the boundary conditions

u(R1) = 0, u(R2) = R2Ω2, ω(R1) = 0, ω(R2) = 0. (2)

They found that microstructure in fluids has a profound influence on the flow.
Recently, numerous researchers have adopted the same law to study hydrodynamic
journal bearings under micropolar lubrication, e.g. Wang & Zhu (2004, 2006), and
concluded that the presence of microstructure increases the load capacity. Using the
boundary conditions,

u(R1) = R1Ω1, u(R2) = R2Ω2, ω(R1) = 0, ω(R2) = 0, (3)

Verma & Sehgal (1968) further derived analytical solutions for the flow between
two concentric rotating cylinders in a simple closed form and discussed the variations
of the microrotation velocity field, shear stress difference, couple stress and strain rate
with the radius for a specific material case. There was a controversy over the zero
microrotation velocity condition given in (2) and (3). In order to ensure fluid particles
near the walls adhere to the wall surfaces due to the physical structure of surfaces,
i.e. its roughness and generally topography, Stokes (1984) re-examined the problem
of Ariman, Cakmak & Hill (1967) by using the physically more suitable boundary
conditions:

u(R1) = 0, u(R2) = R2Ω2, ω(R1) = 0, ω(R2) = Ω2. (4)

Although the basic Couette flow of micropolar fluids under the no-slip conditions
(4) has been investigated by Stokes, the work of the flow between two concentric
rotating cylinders has not been done yet.

It is of both practical and technical interest to study the stability of viscous Couette
flow. Taylor (1923) initiated the investigation. Krueger, Gross & Diprima (1966)
carried out a complete linear stability analysis and found that, for a sufficiently
negative value of the angular velocity ratio, the onset of instability is dominated
by a non-axisymmetric mode. Their numerical simulations were later verified by the
experiments of Andereck, Lin & Swinney (1986). Fluid effects on the flow stability
have been studied extensively, e.g. in Sastry & Das (1985) for micropolar fluids, Chen
& Chang (1998) for electrically conducting fluids, Chang, Chen & Weng (2003) for
ferrofluids, etc. Sastry & Das studied the stabilizing influence of microstructure in
fluids by using the boundary conditions (3). With the aid of the shooting method, they
made a linear stability analysis and concluded that the presence of microstructure
hinders the onset of instability. This research, however, neglected the effects of the
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radius ratio and microinertia and assumed that the disturbances are axisymmetric
modes. The stability problem of Couette flow of micropolar fluids with respect to non-
axisymmetric disturbances for different values of the radius ratio and microinertia
parameter should be studied extensively.

In this study, we combine the field equations of micropolar fluids with no-slip
conditions (u(R1) = R1Ω1, u(R2) = R2Ω2, ω(R1) = Ω1, ω(R2) = Ω2) at the wall
surfaces to solve the problem of Couette flow. Because the instability of Couette
flow is of considerable interest for practical applications, a complete linear stability
analysis will be particularly implemented in this study, in which three-dimensional
disturbances are considered. The main purpose of this research is to examine how non-
zero wall-surface microrotation velocity affects the flow and the onset of instability.
The deterministic nature of the field equations is stated, and the proper formulas
for the shear and vortex viscosities are provided based on available literature.
A systematic study for different values of the microstructure, couple-stress and
microinertia parameters at different values of the radius and angular velocity ratios
is then carried out. The results obtained provide an overview of the flow and stability
characteristics of this important hydrodynamics problem of micropolar fluids.

2. Problem formulations and analysis
2.1. Field equations and physical properties

In a general theory of fluids with microstructure, additional kinematic measures must
be introduced to describe the internal spin of fluids for the velocity field, and couple
stresses should be present for the microrotation velocity field, an average sense for
the rotation of fluid particles in a small volume element. The balance principles for
mass, linear momentum and angular momentum are

∇ · u = 0, (5)

ρ
du
dt

= −∇p + η∇2u + 2ηR∇ × (ω − �

ω), (6)

ρφ
dω

dt
= (α + β) ∇∇ · ω + γ ∇2ω − 4ηR(ω − �

ω), (7)

where d/dt is the material derivative, φ is the moment of inertia per unit mass,
�

ω

is the flow vorticity vector, related to the velocity vector u by
�

ω = ∇ × u/2, η is the
shear viscosity, ρ is the density, p is the pressure, ηR is the vortex viscosity, α and β

are the bulk spin viscosity and γ is the shear spin viscosity. Here, for simplicity, we
have neglected the external force and moment and considered isothermal liquid flow,
so that fluid compressibility is negligible. The companion constitutive relations of (6)
and (7) are

T = −pI + 2ηD + 2ηRe · (�

ω − ω), (8)

M = α (∇ · ω) I + β∇ω + γ (∇ω)T , (9)

where T is the stress tensor, M is the couple stress tensor, D = ((∇u)T + ∇u)/2 is the
deformation rate tensor, I is the Kronecker delta and e is the third order alternating
pseudotensor. Note that the couple stress tensor can be found in Eringen (1966).
However, the stress tensor proposed by Eringen is

T = −pI + (2η + ηR) D + ηRe · (�

ω − ω). (10)
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In (8), we have revised the constitutive relation by replacing η + ηR/2 with the
shear viscosity and ηR/2 with the vortex viscosity, as shown in Stokes (1984). The
resultant (6) has been extensively applied in the literature.

For a fluid containing additives, (6) relates linear momentum to the forces that act
on the fluid, and (7) relates angular momentum to the moments or torques acting
on the fluid. The presence of microstructure causes the collision and friction between
additives (additive–additive interaction) and between additives and walls (additive–
wall interaction) when it is flowing; that is, the bulk spin torque (α + β)∇∇ · ω and
shear spin torque γ ∇2ω are applied. From (7), the two spin torques lead to the
deviation between the microrotation velocity and the flow vorticity and, therefore,
result in an additional viscous force, reflecting in the term 2ηR∇ × (ω − �

ω) given in
(6). Brenner (1970) proposed an original formula of the vortex viscosity. An improved
form was used by Shliomis (1972), written as

ηR =
3

2
ηϕ, (11)

where ϕ is the additive volume fraction. Reported experiments for the magneto-
viscosity of ferrofluids have confirmed the viscosity law, e.g. by Holderied, Schwab
& Stierstadt (1988) for ϕ = 1.40 × 10−1, Embs et al. (2000) for ϕ = 8.37 × 10−2 and
Patel, Upadhyay & Mehta (2003) for ϕ =8.85 × 10−2. Note that it is often necessary
to consider the particle collision and friction to ensure that a magnetoviscosity
expression using formula (11) is valid for different dense fluids (Ambacher, Odenbach
& Stierstadt 1992; Odenbach & Gilly 1996). In addition to the additive–additive and
additive–wall interactions, the viscous force could partly result from the collision and
friction between additives and fluid molecules. This concept was made quantitative
by Einstein (1906), who gave a simple correction to the shear viscosity η. Einstein’s
formula is described by

η = η0 (1 + 2.5ϕ) , (12)

where η0 is the shear viscosity of the fluid without additives (carrier liquid).
The following restrictions on the micropolar material constants can be obtained

from thermodynamics, providing that the Clausius–Duhem inequality is satisfied
locally for all independent processes:

η/K � 0, ηR/K � 0, γ /K � 0,

(3α + 2γ ) /K � 0, −γ /K � β/K � γ /K.

}
(13)

Here, K is the temperature and K > 0 is general. In this study, we introduce the
dimensionless micropolar parameters that relate the shear viscosity η to the material
constants as follows:

ηv =
ηR

η
, ηs =

γ

ηd̄2
, ηb =

α + β

ηd̄2
, (14)

where d̄ = R2 −R1 and ηv , ηs and ηb are the parameters for microstructure and couple
stresses, respectively.

2.2. Basic Couette flow

In this section, we develop the mathematical model of the basic Couette flow as
a basic condition of flow with disturbance. Assume that the field equations (5)–(7)
admit a steady solution of the form:

u = (ur, uθ , uz) = (0, u(r), 0), p = p(r), ω = (ωr, ωθ , ωz) = (0, 0, ω(r)). (15)
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Then, (5) is identically satisfied, and (6) and (7) are reduced to

(η + ηR)D′D′
∗u − 2ηRD′ω = 0, (16)

γD′
∗D

′ω + 2ηRD′
∗u − 4ηRω = 0, (17)

D′p = ρ
u2

r
, (18)

where

D′
∗ = d/dr + 1/r, D′ = d/dr. (19)

Integrating (16)–(18), we obtain

u(r) =
2ηv

1 + ηv

1

k
(AI1(kr) − BK1(kr)) + Cr +

D

r
,

ω(r) = AI0(kr) + BK0(kr) + C,

p(r) = ρ
∫ u2

r
dr,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20)

where

k =

(
ηv

ηs (1 + ηv)

)1/2
2

d̄
, (21)

I0, I1 and K0, K1 are the first-kind and second-kind modified Bessel functions of
zeroth order and first order, and A, B, C and D are arbitrary constants.

Considering the no-slip boundary conditions

u(R1) = R1Ω1, u(R2) = R2Ω2, ω(R1) = Ω1, ω(R2) = Ω2, (22)

we obtain

A = Ω1NS−1, B = −Ω1OS−1, C = Ω1PS−1, D = R2
2Ω2 − R2

2Ω1QS−1, (23)

where

ε = kR2, μ = Ω2/Ω1, ζ = R1/R2,

b = I1(ε) − ζ I1(ζε), c = K1(ε) − ζK1(ζε), d = K0(ε) − K0(ζε),

e = I0(ε) − I0(ζε), f = K0(ε) − μK0(ζε), g = I0(ε) − μI0(ζε),

N = d
(
μ − ζ 2

)
− f

(
1 − ζ 2

)
− 2ηv

1 + ηv

c

ε
(1 − μ) ,

O = e
(
μ − ζ 2

)
− g

(
1 − ζ 2

)
+

2ηv

1 + ηv

b

ε
(1 − μ) ,

P =
2ηv

1 + ηv

1

ε
(bf + cg) +

(
μ − ζ 2

)
(−dI0(ζε) + eK0(ζε)) ,

Q =
2ηv

1 + ηv

1

ε
(NI1(ε) + OK1(ε)) + P,

S =
2ηv

1 + ηv

1

ε
(bd + ce) +

(
1 − ζ 2

)
(−dI0(ζε) + eK0(ζε)) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Hence, the dimensionless velocity is

U (κ) =
u

R1Ω1

=

(
2ηv

1 + ηv

1

ζε
(NI1(εκ) + OK1(εκ)) + Pκ/ζ − Q/ζκ

)
S−1 +

μ

ζκ
, (25)

and the dimensionless microrotation velocity is

Ω(κ) =
ω

Ω1

= (NI0(εκ) − OK0(εκ) + P ) S−1, (26)
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where

κ = r/R2. (27)

From (8) and (9), we obtain

trr = −p, trθ = (η − ηR)

(
du

dr
− u

r

)
+ 2ηR

(
du

dr
− ω

)
, trz = 0,

tθr = (η − ηR)

(
du

dr
− u

r

)
+ 2ηR

(
−u

r
+ ω

)
, tθθ = −p, tθz = 0,

tzr = 0, tzθ = 0, tzz = −p,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(28)

mrr = 0, mrθ = 0, mrz = γ
dω

dr
,

mθr = 0, mθθ = 0, mθz = 0,

mzr = β
dω

dr
, mzθ = 0, mzz = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(29)

The dimensionless shear stress difference is

Trθ (κ) =
trθ − tθr

ηΩ1

= 4ηv (NI0(εκ) − OK0(εκ))

(
ηv

1 + ηv

− 1

)
S−1, (30)

the dimensionless couple stress is

Mrz(κ) =
mrz

γΩ1/R1

=
mzr

βΩ1/R1

= ζε (NI1(εκ) + OK1(εκ)) S−1, (31)

and the dimensionless strain rate is

Γ̇ (κ) =
2γ̇

Ω1

=
1

Ω1

(
du

dr
− u

r

)

=
2ηv

1 + ηv

(
N (I0(εκ) − 2I1(εκ)/εκ)
−O (K0(εκ) + 2K1(εκ)/εκ)

)
S−1 − 2(μ − QS−1)

κ2
. (32)

Now, from (16), (17), (28) and (29), the solutions (25), (26), (30)–(32) can be
reduced to special cases of Couette flow. For ηv = 0, we have the expressions for
u, ω, trθ , tθr , mrz, mzr and 2γ̇ :

u = Cr +
D

r
, (33)

ω = E ln r + F, (34)

trθ = tθr = η

(
du

dr
− u

r

)
= −2D

r2
η, (35)

mrz =
γ

β
mzr = γ

dω

dr
= γ

E

r
, (36)

2γ̇ = −2D

r2
, (37)

where

C = Ω1(μ − ζ 2)/(1 − ζ 2), D = Ω1R
2
1(1 − μ)/(1 − ζ 2),

E = Ω1 (1 − μ) / ln ζ, F = Ω1 (1 − lnR1 (1 − μ) / ln ζ ) .

}
(38)

Equations (33), (35) and (37) are the classical analytical solutions. The non-polar
behaviour can be observed by examining the constitutive relations (8) and (9). If
ηR = 0, then the shear stress will not be affected by the microrotation, and the couple



Stability of micropolar fluid flow between concentric rotating cylinders 349

stress will not be affected by the velocity field. Thus, the vortex viscosity parameter
(or microstructure parameter), in a sense, allows us to measure the deviation of flow
of micropolar fluids from that of non-polar fluids. For ηs = 0, the expressions of u

and 2γ̇ are classical ones, but those of ω, trθ , tθr , mrz and mzr become

ω = C, (39)

trθ = tθr = −2η
D

r2
, (40)

mrz = mzr = 0. (41)

The constant value of the microrotation velocity shows that the boundary
conditions are unsatisfied. Hence, in addition to additional kinematic measures must
be introduced to describe internal spin, couple stresses should be present in Couette
flow of fluids with microstructure.

It should be noted that Ariman et al. (1967), Verma & Sehgal (1968) and Sastry &
Das (1985) used conventional microrotation velocity boundary conditions (zero
microrotation velocity components at the wall surfaces). By using this wall-surface
law, the dimensionles solutions of the velocity field, microrotation velocity field, shear
stress difference, couple stress and strain rate are given by

U (κ) =

⎛
⎜⎝ 2ηv

1 + ηv

1

ζε

(
μ − ζ 2

) (
d (I1(εκ) − I1(ε)/κ)
+e (K1(εκ) − K1(ε)/κ)

)

+
(
μ − ζ 2

)
(−dI0(ζε) + eK0(ζε)) (κ/ζ − 1/ζκ)

⎞
⎟⎠ S−1 +

μ

ζκ
, (42)

Ω(κ) =
(
μ − ζ 2

)
(d (I0(εκ) − I0(ζε)) − e (K0(εκ) − K0(ζε))) S−1, (43)

Trθ (κ) = 4ηv

(
μ − ζ 2

)
(dI0(εκ) − eK0(εκ))

(
ηv

1 + ηv

− 1

)
S−1, (44)

Mrz(κ) = ζε
(
μ − ζ 2

)
(dI1(εκ) + eK1(εκ)) S−1, (45)

Γ̇ (κ) =
2ηv

1 + ηv

(
μ − ζ 2

)
⎛
⎜⎜⎝

d

(
I0(εκ) − 2

λκ
I1(εκ)

)

−e

(
K0(εκ) +

2

λκ
K1(εκ)

)
⎞
⎟⎟⎠ S−1 − 2L

κ2
, (46)

where

L = μ − (μ − ζ 2)

(
−dI0(ζε) + eK0(ζε) +

2ηv

1 + ηv

1

ε
(dI1(ε) + eK1(ε))

)
S−1. (47)

For ηv = 0, the solutions inconsistent with the present ones are

ω = 0, (48)

mrz = mzr = 0. (49)

In the past, (48) and (49) were believed to be the closed form solutions in Couette
flow of fluids without microstructure.

2.3. Field equations with disturbance

To study the stability of Couette flow, we superimpose a general disturbance on the
basic solution in the form

u = (u′
r , u(r) + u′

θ , u′
z), p = p(r) + p′, ω = (ω′

r , ω′
θ , ω(r) + ω′

z), (50)

where (u′
r , u

′
θ , u

′
z), p

′ and (ω′
r , ω′

θ , ω′
z) represent the small perturbations in the velocity,

pressure and microrotation velocity, respectively. Substituting (50) into (5)–(7), and
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neglecting quadratic terms in the usual way, we can obtain the resultant disturbance
equations:

∂u′
r

∂r
+

u′
r

r
+

1

r

∂u′
θ

∂θ
+

∂u′
z

∂z
= 0, (51)

ρ

(
∂u′

r

∂t
+

u

r

∂u′
r

∂θ
− 2u

r
u′

θ

)
= −∂p′

∂r
+ (η + ηR)

(
�u′

r − u′
r

r2
− 2

r2

∂u′
θ

∂θ

)

+ 2ηR

(
1

r

∂ω′
z

∂θ
− ∂ω′

θ

∂z

)
, (52)

ρ

(
∂u′

θ

∂t
+ (D′

∗u)u′
r +

u

r

∂u′
θ

∂θ

)
= −1

r

∂p′

∂θ
+ (η + ηR)

(
�u′

θ − u′
θ

r2
+

2

r2

∂u′
r

∂θ

)

+ 2ηR

(
∂ω′

r

∂z
− ∂ω′

z

∂r

)
, (53)

ρ

(
∂u′

z

∂t
+

u

r

∂u′
z

∂θ

)
= −∂p′

∂z
+ (η + ηR) �u′

z + 2ηR

(
D′

∗ω
′
θ − 1

r

∂ω′
r

∂θ

)
, (54)

ρφ

(
∂ω′

r

∂t
+

u

r

∂ω′
r

∂θ
− uω′

θ

r

)
= (α + β)

∂

∂r

(
1

r

∂(rω′
r )

∂r
+

1

r

∂ω′
θ

∂θ
+

∂ω′
z

∂z

)

− 4ηRω′
r + 2ηR

(
1

r

∂u′
z

∂θ
− ∂u′

θ

∂z

)
+ γ

(
�ω′

r − ω′
r

r2
− 2

r2

∂ω′
θ

∂θ

)
, (55)

ρφ

(
∂ω′

θ

∂t
+

u

r

∂ω′
θ

∂θ
+

uω′
r

r

)
= (α + β)

1

r

∂

∂θ

(
1

r

∂(rω′
r )

∂r
+

1

r

∂ω′
θ

∂θ
+

∂ω′
z

∂z

)

− 4ηRω′
θ + 2ηR

(
∂u′

r

∂z
− ∂u′

z

∂r

)
+ γ

(
�ω′

θ − ω′
θ

r2
+

2

r2

∂ω′
r

∂θ

)
, (56)

ρφ

(
∂ω′

z

∂t
+

u

r

∂ω′
z

∂θ
+

(
D′ω

)
u′

r

)
= (α + β)

∂

∂z

(
1

r

∂(rω′
r )

∂r
+

1

r

∂ω′
θ

∂θ
+

∂ω′
z

∂z

)

− 4ηRω′
z +

2ηR

r

(
∂(ru′

θ )

∂r
− ∂u′

r

∂θ

)
+ γ�ω′

z, (57)

where

� =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (58)

The boundary conditions on velocity and microrotation velocity are

u′
r = u′

θ = u′
z = ω′

r = ω′
θ = ω′

z = 0 at r = R1 and r = R2. (59)

2.4. Eigenvalue problem

The linearized problem for the stability of Couette flow can lead to a simplified
eigenvalue problem by making a normal mode analysis. Since the coefficients in the
resultant equations depend only on r , it is possible to look for solutions of the form:

(u′
r , u′

θ , u′
z) = d̄Ω1(u

′(x), v′(x), w′(x))ei(st+mθ+λz),

p′ = ηΩ1π′(x)ei(st+mθ+λz),

(ω′
r , ω′

θ , ω′
z) = Ω1(e

′(x), f ′(x), g′(x))ei(st+mθ+λz),

⎫⎪⎬
⎪⎭ (60)
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where (u′, v′, w′), π′ and (e′, f ′, g′) are the varying quantities of the small dis-
turbance velocity, pressure and microrotation velocity, respectively, and x is the ratio
(r − R1)/d̄ . It is assumed that s is a complex number, λ is a real number and m is an
integer. Without loss of generality, we can take m to be zero or a positive integer.

We now introduce the following dimensionless variables:

ξ (x) = d̄/(R1 + xd̄), ψ = ρΩ1φ/η, a = d̄λ,

σ = ρsd̄2/η, T = −4Ω2
1 d̄

4ρ2(μ − ζ 2)/η2(1 − ζ 2),

}
(61)

where T represents the Taylor number. Substituting (60) and (61) into the linearized
disturbance equations, we obtain the following system of ordinary differential
equations:

D∗u
′ = −imξ (x)v′ − iaw′, D∗v

′ = Y, Dw′ = Z,

DX = M̄(x)u′ + 2
(
imξ 2(x) −

√
T Ω̄∗(x)

)
v′ − 2imηvξ (x)g′ + 2iaηvf

′

+ imηvξ (x)Y + iaηvZ,

(1 + ηv)DY = −
(
2im(1 + ηv)ξ

2(x) −
√

T Ω̃∗(x)
)
u′ +

(
M(x) + m2ξ 2(x)

)
v′

+ amξ (x)w′ − 2iaηve
′ − imξ (x)X + 2ηvZ,

(1 + ηv)D∗Z = amξ (x)v′ +
(
M̄(x) + a2

)
w′ + 2imηvξ (x)e′ − iaX − 2ηvY ,

D∗e
′ = X, D∗f

′ = Y , Dg′ = Z,

(ηs + ηb) DX = 2iaηvv
′ − 2imηvξ (x)w′ +

(
4ηv + m2ηsξ

2(x) + a2ηs

)
e′

+ 2
(
im (ηs + ηb) ξ 2(x)

)
f ′ − imηbξ (x)Y − iaηbZ

+ iψM̂(x)e′ − ψΩ̂∗(x)f ′,

ηsDY = −2iaηvu
′ − 2imηsξ

2(x)e′ +
(
4ηv + m2ηsξ

2(x) + a2ηs + m2ηbξ
2(x)

)
f ′

+ maηbξ (x)g′ − imηbξ (x)X + 2ηvZ

+ iψM̂(x)f ′ + ψΩ̂∗(x)e′,

ηsD∗Z = 2imηvξ (x)e′ + maηbξ (x)f ′ +
(
4ηv + m2ηsξ

2(x) + a2 (ηs + ηb)
)
g′

− iaηbX − 2ηvY

+ iψM̂(x)g′ + ψΩ̇∗(x)u′,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(62)

where

D =
d

dx
, D∗ =

d

dx
+ ξ (x), Â =

A

Ω1

, B̂ =
B

Ω1

, Ĉ =
C

Ω1

, D̂ =
ξ 2(x)D

Ω1R
2
2 (1 − ζ )2

,

Ā =
1

2

(
−Ω2

1 (μ − ζ 2)

1 − ζ 2

)−1/2
2ηv

1 + ηv

A, B = −1

2

(
−Ω2

1 (μ − ζ 2)

1 − ζ 2

)−1/2
2ηv

1 + ηv

B,

C =
1

2

(
−Ω2

1 (μ − ζ 2)

1 − ζ 2

)−1/2

C, d̄ =
1

2

(
−Ω2

1 (μ − ζ 2)

1 − ζ 2

)−1/2
1

d̄2
D,

M̂(x) = 2σ

(
−T (1 − ζ 2)

μ − ζ 2

)−1/2

+ mΩ̂∗(x),

M̄(x) = (1 + ηv)(a
2 + m2ξ 2(x)) + i

(
σ + m

√
T Ω̄∗(x)

)
,

Ω̂∗(x) =
2ηv

1 + ηv

ξ (x)

kd̄

(
ÂI1

(
kd̄

ξ (x)

)
− B̂K1

(
kd̄

ξ (x)

))
+ Ĉ + D̂,

Ω̄∗(x) = Ā
ξ (x)

kd̄
I1

(
kd̄

ξ (x)

)
+ B̄

ξ (x)

kd̄
K1

(
kd̄

ξ (x)

)
+ C̄ + D̄ξ 2(x),

Ω̇∗(x) = kd̄ÂI1

(
kd̄

ξ (x)

)
− kd̄B̂K1

(
kd̄

ξ (x)

)

Ω̃∗(x) = ĀI0

(
kd̄

ξ (x)

)
− B̄K0

(
kd̄

ξ (x)

)
+ 2C̄.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(63)
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The boundary conditions at x =0 and x =1 are

u′ = v′ = w′ = e′ = f ′ = g′ = 0. (64)

The set of equations (62) with the boundary conditions (64) determines an
eigenvalue problem in the form:

F (ηv, ηs, ηb, ψ, μ, ζ, a, m, σ, T ) = 0. (65)

The marginal state is characterized by the imaginary part of σ, σi, equal to zero.
For given values of ηv, ηs, ηb, ψ , μ and ζ , we seek the minimum positive real
value of T for all positive real numbers a and non-negative integers m, for which
there is a solution of (65) with σi = 0. This value of T sought is the critical Taylor
number Tc. The values of a and m corresponding to Tc determine the onset mode
of instability. Moreover, the real part of σ , σr corresponding to Tc determines the
frequency of oscillation. The critical disturbance is called the axisymmetric stationary
mode if m = 0 and σr = 0, the axisymmetric oscillation mode if m =0 and σr �= 0, and
the non-axisymmetric mode if m �= 0. For a fixed value of z, the wave will propagate
in the direction of the basic flow with an angular velocity (in units of Ω1) given by
c = −ησr/ρmd̄2Ω1. We solve the two-point eigenvalue problem defined by (62) and
(64) by a shooting technique. The details of the procedure are discussed below.

A set of six linearly independent solutions of the system of differential equations
(62) which satisfy the boundary condition at x = 0 can be constructed by imposing
the initial conditions:

(u′
j , v′

j , w′
j , e′

j , f ′
j , g′

j , Xj , Yj , Zj , X̄j , Ȳj , Z̄j )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) for j = 1,

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) for j = 2,

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) for j = 3,

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) for j = 4,

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) for j = 5,

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) for j = 6,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

as x = 0.

(66)

Any solution of the system of (62) satisfying the boundary condition at x = 0 can be
represented as a linear combination of these solutions. A necessary condition that this
linear combination also satisfies the boundary condition u′ = v′ = w′ = e′ = f ′ = g′ = 0
at x = 1 is the vanishing of the determinant

F (ηv, ηs, ηb, ψ, μ, ζ, a, m, σ, T ) ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u′
j

v′
j

w′
j

e′
j

f ′
j

g′
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 for j = 1 ∼ 6, as x = 1. (67)

This is the required characteristic equation, from which the curve of neutral stability
can be obtained. Here, we choose three pairs of trial points in the plane (T , σr ) to
determine a root of these equations for fixed values of ηv, ηs, ηb, ψ, μ, ζ, a

and m. For each pair of trial points, the set of solutions was obtained by using
the Runge–Kutta method to solve the system of first-order equations (62). The
bivariate interpolation was then used to obtain an approximation to the root. Once
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m ac Tc

ηv ηs ηb ψ ζ μ [A1] [A2] [B] [A1] [A2] [B] [A1] [A2] [B]

0 0 0 0 0.95 0 0 0 0 3.132 3.132 3.128 3510 3510 3510
–1 4 4 4 3.685 3.686 3.680 20 068 20 068 20 072
–1.25 5 5 5 3.777 3.776 3.774 30 619 30 619 30 632

0.95 –1 4 4 4 3.685 3.686 3.680 20 068 20 067 20 072
0.9 –1 3 3 3 3.728 3.727 3.721 23 855 23 855 23 861
0.8 –1 2 2 2 3.840 3.839 3.835 36 751 36 751 36 767

[A1] [A2] [C] [A1] [A2] [C] [A1] [A2] [C]

1/3 1/3 1/15 0 0.95 0.87 0 0 0 3.125 3.126 3.117 2898 3058 3023
0.66 0 0 0 3.126 3.126 3.117 3435 3461 3400
0.41 0 0 0 3.127 3.127 3.117 4082 4101 4020
0.17 0 0 0 3.130 3.130 3.121 4956 4980 4797
0 0 0 0 3.136 3.136 3.125 5830 5863 5615

Table 1. Comparison of the results of the present study ([A1] and [A2]) with those of Krueger
et al. (1966) ([B]) and Sastry & Das (1985) ([C]). [A1] denotes the case with no-slip conditions,
and [A2] denotes the case with slip conditions.

the sufficiently accurate root was determined, the process was repeated for a sufficient
number of values of a, so that the minimum of T for a fixed value of m, T m

c , could
be determined by using the quadratic polynomial interpolation with an interval in
a of 0.2. Finally, the entire process was repeated for other values of m, so that the
minimum of T m

c , Tc and the corresponding values of a, σr and c could be obtained
for the assigned values of ηv, ηs, ηb, ψ , μ and ζ .

3. Results and discussion
We pay attention to the influence of non-zero wall-surface microrotation velocity on

the basic flow and the onset of instability for a kerosene-based suspension, in which
fine iron powder is dispersed. At room temperature (K =298.15 K), the density of
carrier liquid is ρ0 = 8.17 × 102 kgm−3, the density of powder is ρs = 5.24 × 103 kg m−3

and the shear viscosity of carrier liquid is η0 = 1.38×10−3 kg m−1 s−1. The fluid density
can be obtained by ρ = ρsϕ +ρ0(1 − ϕ). Recall that a micropolar fluid model is better
used to represent rheological behaviour for flow simulations at the small scale. The
gap size of the annulus d̄ is set to 0.1 mm. It should be noted that the molecular
structure of carrier liquid may play an important role in the space with dimensions
down to the micrometre scale (Papautsky 1999).

First, we validate the code by comparing our numerical results with those of
Krueger et al. (1966) and Sastry & Das (1985). Since the work of Krueger et al.
is only a special case of the present study when microstructure, couple stresses and
microinertia are absent, we conduct calculations for ηv = ηs = ηb =ψ = 0 and check
our results in terms of Tc, ac and m for both of the no-slip-boundary case ([A1] – non-
zero microrotation velocity components at the wall surfaces) and the slip-boundary
case ([A2] – zero components) with the corresponding data obtained by them. Here,
ηv = ηs = ηb = ψ = 0 means that the values of ηv, ηs, ηb and ψ are much less than
10−6. The comparison is in excellent agreement and the percentage difference based
on Tc is generally less than 0.044 % as shown in table 1. Another check is made by
considering the slip-boundary case of a micropolar fluid (ηv = 1/3, ηs =1/3, ηb = 1/15,
and ψ = 0: ϕ = 2.22×10−1, ρ = 1.80×103 kg m−3, η = 2.15×10−3 kgm−1 s−1, γ = 7.16×



354 H. C. Weng, C.-K. Chen and M.-H. Chang

1.0

0.9

0.8

κ

κ

κ

0.7 0.7

1.0

0.9

0.8

1.0

0.9

0.8

0.7 0.7

1.0

0.9

0.8

1.0

0.9

0.8

0.7 0.7

1.0

0.9

0.8

–1.5 –1.0 –0.5

μ = 0.5

μ = 0

μ = –1

μ = 0

μ = –1

μ = 0.5

ζ = 0.9

ζ = 0.9 ζ = 0.9

ζ = 0.9 ζ = 0.9

ζ = 0.90.8

0.7

0.8

0.9

0.8

0.8

0.8

0.8

0.7

0.7

0.70.7

0.8

0.7

0.7

0.8

0.9

0.8

0.70.7

0 0.5 1.0 –4 –3 –2 –1 0 1

–4 –3 –2 –1 0 1

–4 –3 –2 –1 0 1

–1.5 –1.0 –0.5 0 0.5 1.0

–1.5 –1.0 –0.5

U Ω

0 0.5 1.0

[A1]
[A2]

[A1]
[A2]

(a) (b)

Figure 1. (a) Velocity distribution, (b) microrotation velocity distribution for three typical
values of μ at different values of ζ with ηv = 0.4, ηs = 0.4, ηb = 0.1 and ψ = 1. [A1] denotes
the case with no-slip conditions, and [A2] denotes the case with slip conditions.

10−12 kg m s−1 and α + β = 1.43 × 10−12 kg m s−1) carried out by Sastry & Das. The
agreement is still quite good and the differences in Tc are less than 4.23 %. Note
that the results of Sastry & Das were obtained under the assumption of small-gap
approximation (ζ → 1) which causes more apparent disagreement.

From table 1, it seems that the effect of non-zero wall-surface microrotation
velocity on the small-gap Couette flow of a specific fluid is negligible. To extend the
analysis, calculations have been performed over wide ranges of the microstructure
parameter (0 � ηv � 0.5 : 0 � ϕ � 3.33×10−1), the couple-stress parameter (0 � ηs � 1 :
0 � γ � 2.53 × 10−11 kgm s−1) the microinertia parameter (0 � ψ � 10), the radius
ratio (0.7 � ζ � 0.95) and the angular velocity ratio (−1.5 � μ � 0.9). Note that the
negligible effect of bulk spin viscosity, characterized by ηb, has been validated
by calculations. The value of ηb chosen for the analysis is 0.1 (α + β = 2.53 ×
10−12 kg m s−1).

For simplicity, now we pay attention to two flow fields: the velocity U and the
microratation velocity Ω . Figure 1(a) illustrates the variations of U with the position
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Figure 2. Influence of the (a) microstructure parameter ηv , (b) couple-stress parameter ηs

on the normalized velocity difference between the no-slip-boundary case ([A1]) and the
slip-boundary case ([A2]). The solid line denotes the solution obtained at a higher value
of the parameter, and the dashed line denotes the solution obtained at a lower value.

parameter κ for three typical values of μ. The corresponding variations of Ω are
shown in figure 1(b). Results reveal that the improvement in wall-surface microrotation
velocity results in additional quantity in U and apparent disagreement in Ω . This
effect is magnified by decreasing the radius ratio ζ .

In figure 2, we plot the normalized difference between the no-slip-boundary velocity
U[A1] and the slip-boundary velocity U[A2],

�U =
U[A1] − U[A2]

U (ζ ) − U (1)
, (68)

for three typical values of μ at different values of ζ obtained under both the higher and
lower value parameters of ηv and ηs . The reference values ofηs and ηv in figures 2(a)
and 2(b) are 0.4. It is found from figure 2(a) that for most situations, the increase
of the microstructure parameter ηv leads to an enhancement of the difference. The
microstructure effect increases with increasing μ and decreasing ζ . From figure 2(b),
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m ac Tc σr c

ζ μ [A1] [A2] [A1] [A2] [A1] [A2] [A1] [A2] [A1] [A2]

0.9 0.8 0 0 3.129 3.132 2543 3522 0 0 0 0
0.6 0 0 3.127 3.127 3891 3964 0 0 0 0
0.4 0 0 3.127 3.128 4525 4578 0 0 0 0
0.2 0 0 3.129 3.130 5359 5420 0 0 0 0
0 0 0 3.135 3.136 6544 6635 0 0 0 0

–0.2 0 0 3.149 3.151 8361 8520 0 0 0 0
–0.4 0 0 3.186 3.193 11 436 11 761 0 0 0 0
–0.6 0 0 3.317 3.340 17 318 18 078 0 0 0 0
–0.689 0 1 3.449 3.487 21 618 22 729 0 –9.634 0 0.3559
–0.704 1 1 3.477 3.513 22 478 23 605 –9.572 –9.860 0.3572 0.3594
–0.8 2 2 3.584 3.611 27 963 29 333 –20.991 –21.729 0.3623 0.3667
–1 3 3 3.678 3.694 40 923 42 985 –35.593 –36.523 0.3583 0.3588

0.8 0.6 0 0 3.128 3.132 3535 4077 0 0 0 0
0.4 0 0 3.128 3.131 4628 4768 0 0 0 0
0.2 0 0 3.131 3.133 5622 5762 0 0 0 0
0 0 0 3.137 3.141 7060 7274 0 0 0 0

–0.2 0 0 3.154 3.162 9393 9807 0 0 0 0
–0.4 0 0 3.211 3.234 13 736 14 712 0 0 0 0
–0.6 0 0 3.445 3.536 23 105 25 729 0 0 0 0
–0.605 0 1 3.456 3.533 23 448 26 123 0 –15.039 0 0.3433
–0.634 1 1 3.512 3.580 25 562 28 310 –14.842 –15.777 0.3464 0.3503
–0.8 2 2 3.667 3.705 38 149 42 118 –33.929 –35.683 0.3441 0.3445
–1 2 2 3.730 3.779 58 658 66 119 –41.821 –44.757 0.3653 0.3684

0.7 0.4 0 0 3.128 3.136 4631 5005 0 0 0 0
0.2 0 0 3.132 3.138 5956 6200 0 0 0 0
0 0 0 3.139 3.147 7759 8146 0 0 0 0

–0.2 0 0 3.162 3.178 10 909 11 768 0 0 0 0
–0.4 0 0 3.260 3.322 17 590 20 088 0 0 0 0
–0.524 0 1 3.470 3.588 26 079 31 124 0 –20.592 0 0.3266
–0.565 1 1 3.553 3.648 30 065 35 322 –20.136 –22.135 0.3313 0.3363
–0.6 1 1 3.601 3.718 33 296 39 361 –21.443 –23.654 0.3413 0.3472
–0.8 2 2 3.821 3.892 57 011 67 035 –48.513 –52.447 0.3191 0.3183
–1 2 2 3.849 3.911 88 550 107 159 –58.794 –65.268 0.3331 0.3363

Table 2. Critical parameters for various values of μ at three assigned values of ζ with ηv = 0.4,
ηs =0.4, ηb = 0.1, and ψ = 1. [A1] denotes the case with no-slip conditions, and [A2] denotes
the case with slip conditions.

the couple-stress effect is found to shift the asymmetric profile of �U to the outer-
cylinder side. This effect also increases with increasing μ and decreasing ζ .

The variations of Re1c, ac, σr and c as a function of the Re2 for the no-slip-
boundary case ([A1]) and the slip-boundary case ([A2]) at different values of ζ with
ηv = 0.4, ηs = 0.4, ηb = 0.1 and ψ = 1 are shown in figure. The specific data are given in
table 2, and the specific neutral curves are illustrated in figure 4. Note that the critical
inner-cylinder Reynolds number Re1c and the outer-cylinder Reynolds number Re2

are defined as

Re1c =
ρR1Ω1d̄

η
=

1

2(1/ζ − 1)

√
1 − ζ 2

ζ 2 − μ
Tc, (69)

Re2 =
ρR2Ω2d̄

η
=

μ

ζ
Re1c. (70)
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Figure 3. (a)–(d ) Variation of Re1c , ac , σr and c with Re2 at different values of ζ with ηv = 0.4,
ηs = 0.4, ηb = 0.1 and ψ = 1. [A1] denotes the case with no-slip conditions, and [A2] denotes
the case with slip conditions.

In the plane (Re1c, Re2), the locus determined from Tc divides the plane into
stable and unstable regions. It is obvious from figure 3(a) that the locus of [A1]
is always below that of [A2], i.e. the no-slip-boundary case is more unstable than
the slip-boundary case. The difference between the two loci is obvious especially for
small values of Re2 and ζ . The more unstable region results from the additional
translational motion induced by the no-slip boundaries. In addition, table 2 shows
that the critical disturbance is a non-axisymmetric mode (m �= 0) as the value of μ (or
Re2) is sufficiently negative. The improvement in wall-surface microrotation velocity
leads to the reduction of the limit of the critical non-axisymmetric disturbance.
Figure 4 illustrates the transition processes from axisymmetric to non-axisymmetric
onset modes through the neutral curves in the plane (Re1c, a). We may recall that
the critical Reynolds number Re1c and axial wavenumber ac are determined by the
minimum of these neutral curves. As Re2 decrease, the curve m = 0 shifts up (and
to the right) more quickly than the curve m =1, and Re1c and ac are eventually
determined by the minimum of m =1. Since the minimum of the curve m =0 is
always located at the right-hand side of that of the curve m =1, a change of onset
mode may cause a sharp decrease in ac. In figures 3(b), it shows that a sharp variation
due to a change of onset mode (from m to m ± 1) predicts a discontinuity of the
curve. ac increases as Re2 decreases, except for onset mode changing or sufficiently
negative values of Re2. The improvement in wall-surface microrotation velocity tends
to reduce the values of ac. Thus, the axial wavelength 2πd/ac increases. In figures 3(c)
and 3(d ) the discontinuities of curves are also due to a change of onset mode. As the
instability sets in as a non-axisymmetric mode, the oscillatory frequency σr decreases
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Figure 4. Neutral curves of different modes for four assigned values of Re2 with ζ = 0.7.
[A1] denotes the case with no-slip conditions, and [A2] denotes the case with slip conditions.

with decreasing Re2 while the angular velocity c increases. The microrotation velocity
no-slip conditions generally raise the magnitudes of σr and c. The effect of wall-surface
microrotation velocity on the stability characteristics are shown to be magnified by
decreasing Re2 and ζ .

In figure 5, we plot the microstructure and couple-stress effects on the onset of
instability and the onset mode at different values of ζ with ηb = 0.1, ψ = 1, and
Re2 = −170. The reference values of ηs and ηv in figures 5(a) and 5(b) are 0.4. It is
obvious that Re1c increases gradually with increasing ηv and ηs , but m may decrease.
This means that both microstructure and couple stresses in fluids have a stabilizing
effect which may lead to onset mode changing. The data show that as the wall-surface
microrotation velocity is improved, the stabilizing effect is less obvious; moreover, the
limits of critical non-axisymmetric disturbances are reduced. The effect of wall-surface
microrotation velocity can be magnified by increasing ηv and ηs .

Finally, to understand the role of microinertia on stability, we further plot in figure 6
the effect of microinertia (increasing ψ) on the onset of instability at different values
of ζ with Re2 = 170 (a case of μ > 0), Re2 = 0 (the case of μ = 0) and Re2 = −170
(a case of μ < 0). It should be noted from calculations that microinertia tends to
reduce the limits of critical non-axisymmetric disturbances; however, its role on the
onset mode is negligible. Hence, the negligible effect is not shown here. In general,
the microinertia effect is to slightly destabilize the flow, due to the contribution to
the translational motion of fluid particles; however, as the radius ratio ζ decreases,
it may be to slightly stabilize the flow. For instance, in the counter-rotating and
no-slip-boundary case (μ < 0 and [A1]), shown in figure 6, the values of Re1c for
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Figure 5. Influence of the (a) microstructure parameter ηv , (b) couple-stress parameter ηs

on the critical inner-cylinder Reynolds number and the azimuthal wavenumber. The case of
counter-rotating cylinders considered here is Re2 = −170. [A1] denotes the case with no-slip
conditions, and [A2] denotes the case with slip conditions.

ψ = 0, 5, and 10 are 230.34, 229.64 and 229.05, respectively, at ζ = 0.9 and 164.99,
165.02 and 165.07, respectively, at ζ = 0.7. The stabilizing effect (the increase in Re1c

with increasing ψ) may result from the greater linear-momentum loss via particle
rotation. As for the effect of wall-surface microrotation velocity, characterized here
by the normalized difference between the no-slip-boundary Reynolds number and the
slip-boundary Reynolds number �Re results show that this effect can be magnified
by decreasing ψ for the case of μ < 0 or by increasing the ψ for the cases of μ > 0
and μ = 0.

4. Conclusions
A complete analysis for the linear stability of micropolar fluid flow between

two concentric rotating cylinders has been conducted. The effect of non-zero wall-
surface microrotation velocity on the flow and stability characteristics with respect
to the microstructure, couple-stress and microinertia parameters, and the radius and
angular velocity ratios were discussed in details. Results revealed that non-zero
wall-surface microrotation velocity tends to enhance the flow and to advance the
onset of instability. Moreover, it was found that the same effect as microstructure,
couple stresses and microinertia is to reduce the limits of critical non-axisymmetric
disturbances. By increasing the effect of curvature, microstructure, or couple stresses
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Figure 6. Influence of the microinertia parameter ψ on the critical inner-cylinder Reynolds
number. �Re denotes the normalized difference between the no-slip-boundary value and the
slip-boundary value, [A1] denotes the case with no-slip conditions, and [A2] denotes the case
with slip conditions.

or the effect of microinertia in the cases of corotating cylinders and a stationary outer
cylinder or by decreasing the effect of microinertia in the case of counterrotating
cylinders, the role of non-zero wall-surface microrotation velocity on stability can be
more visible. Such a type of study helps the understanding of the flow and stability
problems for fluids with microstructure.
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